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Abstract

In this paper a novel approach is proposed for constructing discrete counterparts of constitutive equations over poly-
hedral grids which ensure both consistency and stability of the algebraic equations discretizing an electromagnetic field
problem.

The idea is to construct discrete constitutive equations preserving the thermodynamic relations for constitutive equa-
tions. In this way, consistency and stability of the discrete equations are ensured. At the base, a purely geometric condition
between the primal and the dual grids has to be satisfied for a given primal polyhedral grid, by properly choosing the dual
grid.

Numerical experiments demonstrate that the proposed discrete constitutive equations lead to accurate approximations
of the electromagnetic field.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Recently, there has been an increasing interest in the so called ‘‘Discrete Geometric Approach’’ for the solu-
tion of electromagnetic field problems at discrete level. Such an approach focuses directly on the geometric
structure behind Maxwell equations and constitutive equations. In this respect, the works of Weiland [1,2],
Tonti [3], and Bossavit [4,5] play a fundamental role. For instance, it is well known that Faraday or Ampères
laws can be recast as algebraic relations between fluxes and circulations associated with surfaces and lines1

endowed with an inner or outer orientation [6]. Then, instead of considering all the surfaces and lines, only
a finite number of oriented faces and edges is considered. These faces and edges belong to a pair of dual grids
according to their orientation. A grid is a collection of oriented geometric elements such as nodes, edges, faces,
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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and volumes; the primal grid has inner oriented geometric elements, while the outer oriented geometric ele-
ments form the dual grid. The two grids are one dual of the other; in other words, there is a one-to-one cor-
respondence between nodes, edges, faces, and volumes of the primal grid and volumes, faces, edges and nodes
of the dual grid respectively.

As a result of this discretization strategy, Maxwell’s equations translate into an exact set of algebraic equa-
tions while the discrete counterparts of constitutive equations are approximate. For this reason most of the
research work reported in literature, is concentrated on the construction of discrete constitutive equations.

Discrete constitutive equations are required to approximate the relation between fluxes/circulations on
faces/edges of the dual grids. More specifically, the discrete constitutive equations constructed for a primal
grid volume are required to exactly relate circulations/fluxes on edges/faces of the primal grid with fluxes/cir-
culations on faces/edges of the dual grid at least when the fields involved and the material properties are uni-
form in such a primal grid volume. This ensures that the discrete equations are consistent with the continuous
equations, in the sense that the discrete equations approximate the continuous equations with an error van-
ishing with the grain of the grid [5,7].

Besides, the matrices representing the discrete constitutive equations are required to be symmetric and posi-
tive definite. This ensures the stability of the discrete equations, in the sense that small perturbations in the
data lead to small perturbations in the solution [8,7].

It is a matter of fact that the methods proposed in literature, in general do not ensure both consistency and
stability of the discrete equations to hold simultaneously. For example in [9,10], consistency is ensured by con-
struction, while stability is not ensured. On the contrary in [11–13], stability is ensured by construction, but
consistency does not hold in general. Recently, in this last case, the authors have also shown that in some sit-
uations this approach can be extended in such a way that not only stability but also consistency is ensured
[14,15].

Moreover, all these results are restricted to very particular grids, mainly composed of parallelepipeds or
simplexes and mainly to scalar electric and magnetic constitutive equations. Thus no general approach has
been reported in literature, at authors knowledge, for constructing discrete constitutive equations over primal
polyhedral grids which ensure both consistency and stability of discrete equations. The novelty content of this
paper can be summarized in the following main results.

Firstly, we relate the consistency and the stability properties to the thermodynamic relations for constitutive
equations. Precisely, we show that the methods previously presented in literature [18] for constructing discrete
constitutive equations, usually do not preserve all the thermodynamic relations for constitutive equations.

Secondly, by means of Properties 6 and 7, we show a way to construct discrete constitutive equations pre-
serving all the thermodynamic relations for the constitutive equations. In this way we prove that consistency
and stability of the discrete equations are ensured. This is possible only if the primal and the dual grids are
related by a purely geometric constraint, given by Properties 3 and 4, that can be satisfied at least for primal
grids of convex polyhedra, provided that the dual grid is properly chosen.

Numerical experiments show that the novel discrete constitutive equations lead to accurate approximations
of the electromagnetic field.

The paper is organized as follows. In Section 2 the thermodynamic relations for constitutive equations are
recalled. In Section 3 the methods reported in literature for constructing discrete constitutive equations are
discussed in terms of the set of thermodynamic relations that they preserve. In Section 4 the construction
of discrete constitutive equations is proposed which preserve thermodynamic relations of constitutive equa-
tions, as a way for ensuring consistency and stability of discrete equations. In Sections 5 and 6 the geometric
relation between primal and dual grids is introduced and interpreted as the extension to dual grids of the rela-
tion between covariant and contravariant components. In Sections 7 and 8 the novel method for constructing
discrete constitutive equations is derived. Numerical experiments are reported in Section 9. In Appendix A
covariant and contravariant components are reinterpreted in terms of circulations and fluxes. In Appendix
B some useful geometric relations for polygons are reported.

2. Thermodynamic relations for constitutive equations

Let us consider a linear, non-dispersive electromagnetic media.
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Let e be the electric field, of covariant components ei with i ¼ 1; 2; 3. Both the electric displacement d, of
contravariant components di with i ¼ 1; 2; 3 and the electric energy density uE can be written as a function
of the electric field e in terms of a permittivity tensor e, of contravariant components eij with i; j ¼ 1; 2; 3,
d ¼ e � e; ð1Þ

uE ¼
1

2
e � e � e ð2Þ
or equivalently, in tensorial notation,
di ¼
X

j

3

1

eijej;

uE ¼
1

2

X
ij

3

1

eie
ijej:
From the principles of thermodynamics [16] for an electric system locally in equilibrium, the relations de-
scribed in the following hold.

The electric energy density uE is a function of the electric field e. The electric displacement d is defined from
the electric energy density uE as
di ¼ ouE

oei
; i ¼ 1; 2; 3: ð3Þ
The permittivity tensor is defined from the electric displacement d as
eij ¼ odi

oej
; i; j ¼ 1; 2; 3: ð4Þ
In an equivalent way, by using (3), we can rewrite the permeability tensor e as a function of the electric energy
density uE as
eij ¼ o
2uE

oejoei
; i; j ¼ 1; 2; 3 ð5Þ
from which, by exchanging the derivatives order, the following equations, known as Maxwell’s relations [16],
descend
eij ¼ o2uE

oejoei
¼ o2uE

oeioej
¼ eji; i; j ¼ 1; 2; 3 ð6Þ
or equivalently the permittivity tensor is symmetric [17].
Besides, since the local equilibrium of the electric system is stable, the electric energy density uE is a convex

function of the electric field e and the permittivity tensor e is positive definite [16].
Similar considerations can be done for magnetic systems. Let b be the magnetic induction, of covariant

components bi with i ¼ 1; 2; 3. Both the magnetic field h, of contravariant components hi with i ¼ 1; 2; 3,
and the magnetic energy density uM can be written as a function of the magnetic induction b in terms of
the reluctivity tensor m, of contravariant components mij with i; j ¼ 1; 2; 3,
h ¼ m � b; ð7Þ

uM ¼
1

2
b � m � b: ð8Þ
From the principles of thermodynamics [16] it follows:
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hi ¼ ouM

obi
; i ¼ 1; 2; 3; ð9Þ

mij ¼ ohi

obj
; i; j ¼ 1; 2; 3; ð10Þ

mij ¼ o2uM

objobi
; i; j ¼ 1 . . . 3: ð11Þ
Maxwell’s relations [16] hold or equivalently the reluctivity tensor is symmetric. The local equilibrium of the
magnetic system is stable, or equivalently the m reluctivity tensor is positive definite [16].

3. Existing approaches to discrete constitutive equations

The discrete geometric approach to electromagnetic problems relies on a pair of interlocked primal–dual
grids introduced in the spatial region of interest. In order to compute the discrete counterparts of electric
and magnetic constitutive equations, with respect to the pair of grids, various methods have been reported
in literature.

In some of these methods [9,10], the discrete electric constitutive equation is represented by a matrix E

approximating the relation between the array v of the circulations of e along the primal edges and the array
~w of the fluxes of d across the dual faces as
~w ¼ Ev: ð12Þ

In this way, (12) is consistent with (1), but, in general, there is no guarantee that the matrix E is either sym-
metric or positive definite.

Analogously the discrete magnetic constitutive equation is represented by a matrix N approximating the
relation between the array u of the fluxes of b across the primal faces and the array ~f of the circulations of
h along the dual edges as
~f ¼ Nu: ð13Þ

In this way there is no guarantee that the matrix N is either symmetric or positive definite, even though it is
consistent with (7).

In other methods [12,5], the discrete electric constitutive equation is represented by a matrix E which defines
a quadratic form approximating the relation between v and electric energy UE as
UE ¼
1

2
vTEv: ð14Þ
In this way (14) is consistent with (2) and matrix E can be ensured by construction to be symmetric positive
definite. However, there is no guarantee that the discrete electric constitutive equation is consistent with (1).

Analogously, the discrete magnetic constitutive equation is represented by a matrix N which defines a qua-
dratic form approximating the relation between the array u and the magnetic energy UM as
UM ¼
1

2
uTNu: ð15Þ
In this way (15) is consistent with (8) and matrix N can be ensured by construction to be symmetric, positive
definite. However there is no guarantee that it is consistent with (7).

In order to ensure the consistency and stability of the resulting system of discrete equations, the following
properties are sufficient conditions as proved in [5]:

(i) consistency of the discrete constitutive equation (12), (13) with (1), (7) respectively;
(ii) symmetry and positive definiteness of the matrices E;N.

However, neither of the previous two techniques is, in general, able to ensure these properties
simultaneously.
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4. Discrete constitutive equations preserving the thermodynamic relations for constitutive equations

Here we propose to combine the two previous techniques in such a way that properties (i) and (ii) hold
simultaneously. Thus, we require that the discrete electric constitutive equation is consistent both with
(1),and (2), being E a symmetric, positive definite matrix.

This can be reinterpreted as follows: all the thermodynamic relations for the electric constitutive equations at

the continuous level are preserved at the discrete level. This is equivalent to saying that, from the relations for
the electric system of Section 2, the relations at discrete level can be obtained by substituting e ¼ ½ej�, d ¼ ½di�,
e ¼ ½eij�, uE, with i; j ¼ 1 . . . 3, with their discrete counterparts v ¼ ½vj�, ~w ¼ ½~wi�, E ¼ ½Eij�, UE, with i; j ¼ 1 . . . l,
respectively,2 l being the number of edges of the primal grid.

Thus, the electric energy UE is a function of the array v. The array ~w of elements ~wi with i ¼ 1 . . . l, is
obtained from UE as
2 We
notatio
~wi ¼ oU E

ovi
; i ¼ 1 . . . l:
Matrix E, of elements Eij with i; j ¼ 1 . . . l, is obtained from w as
Eij ¼ o~wi

ovj
; i; j ¼ 1 . . . l
or equivalently from UE as
Eij ¼ o2UE

ovjovi
; i; j ¼ 1 . . . l
from which, by exchanging the order of derivatives, Maxwell’s relations hold for discrete quantities
Eij ¼ o2UE

ovjovi
¼ o2UE

oviovj
¼ Eji; i; j ¼ 1 . . . l
or equivalently the matrix E must be symmetric. UE is a convex function of v or equivalently E must be positive

definite.
As for the electric system, also for the magnetic system we require that the discrete magnetic constitutive

equation is consistent both with (7) and (8), N being a symmetric, positive definite matrix. This can be rein-
terpreted as follows: all the thermodynamic relations for the magnetic constitutive equations at the continuous

level are preserved at the discrete level. This is equivalent to saying that from the relations at continuous level
for the magnetic system of Section 2 relations at discrete level can be obtained by substituting b ¼ ½bj�, h ¼ ½hi�,
m ¼ ½mij�, uM , with i; j ¼ 1 . . . 3, with their discrete counterparts u ¼ ½uj�, ~f ¼ ½~f i�, N ¼ ½nij�, UM , with
i; j ¼ 1 . . . f , respectively, f being the number of faces of the primal grid. Thus
~f i ¼ oU M

oui
; i ¼ 1 . . . f ;

Nij ¼ o~f i

ouj
; i; j ¼ 1 . . . f :
Maxwell’s relations hold for discrete quantities, or equivalently N is symmetric. UM is a convex function of u,
or equivalently N is positive definite.

5. Extension of the notion of covariant and contravariant components to dual grids

Hereafter we assume that the primal grid is composed of one volume X. Let Ci, with i ¼ 1 . . . l, be the l

primal edges of X, having edge vectors
attach subscript and superscript indexes to discrete quantities in a similar way to continuous quantities; the adoption of such a
n will be motivated in Section 5.
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l i ¼
Z

Ci

tðrÞ;
being tðrÞ the unit tangent vector to Ci. Let Ri, with i ¼ 1 . . . f , be the f primal faces of X, having face vectors
si ¼
Z

Ri

nðrÞ;
being nðrÞ the unit normal vector to Ci. In a similar way, but with a superscript index, we indicate with ~l i,
i ¼ 1 . . . f , the edge vectors of the dual edges ~Ci of X and with ~si, i ¼ 1 . . . l, the face vectors of the dual faces
~Ri of X.

In order to preserve the thermodynamic relations for the electric constitutive equations at the discrete level,
(12) and (14) are required to be exact at least when the permittivity tensor e is homogeneous and when the
electric field e and the electric displacement d are spatially uniform in X.

Property 1. In order that (12) and (14) hold exactly for arbitrary, spatially uniform, electric field e and electric

displacement d and for an arbitrary homogeneous, symmetric positive definite, permittivity tensor e, it is necessary

that the following equation:
V I ¼
X

i

l

1

l i~s
i; ð16Þ
holds, where V is the volume of X, I is the fundamental tensor.3

Proof. Since e is spatially uniform it results in vi ¼ l i � e. Then since d ¼ e � e it results in ~wi ¼ ~si � e � e. Thus
from (14) it follows:
X

i

l

1

ðl i � eÞð~si � e � eÞ ¼ e �
X

i

l

1

l i~s
i

 !
� e � e ¼ V e � e � e:
Then, since e is arbitrary, it results in4
symðA � eÞ ¼ V e;
being
A ¼
X

i

l

1

l i~s
i:
Let us assume orthogonal Cartesian coordinates. Since e is an arbitrary symmetric, positive definite tensor
we can choose
e ¼
1 0 0

0 1 0

0 0 1

264
375
from which it follows that A11 = A22 = A33 = V. Alternatively by choosing
e ¼
1 1

2
0

1
2

1 0

0 0 1

264
375
it follows A12 = A21 = 0. Similarly by choosing
orthogonal Cartesian coordinates the fundamental tensor is represented by an identity matrix.
th ‘‘sym’’ we indicate the operator which transform a double tensor of components Tij into the symmetric double tensor of
nents ðT ij þ T jiÞ=2.
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e ¼
1 0 1

2

0 1 0
1
2

0 1

264
375
it follows A13 = A31 = 0. Lastly by choosing
e ¼
1 0 0

0 1 1
2

0 1
2

1

264
375
it follows A23 = A32 = 0. Thus
A ¼ V I
and (16) holds. h

Property 1 is a geometric property relating primal edges to dual faces. It is thus independent of material
properties. By taking the dot product of (16) with two arbitrary vectors a and b, it also follows:
V b ¼
X

i

l

1

~Bil i; ð17Þ

V a ¼
X

i

l

1

Ai~s
i; ð18Þ

V a � b ¼
X

i

l

1

Ai
~Bi; ð19Þ
Ai being the circulations of a along the edges of the primal grid and ~Bi being the fluxes of b across the faces of
the dual grid. Assuming that it is Ai ¼ a � l i and ~Bi ¼ b � ~si, it straightforwardly follows that each of Eqs. (16)–
(19) implies all of the others.

Eqs. (16)–(19) have the same structure of (A.10)–(A.13) of Appendix A, relating covariant and contravari-
ant components and bases. Thus they can be reinterpreted as extensions of the relations between covariant and
contravariant components and bases rewritten as in Appendix A in terms of edges and face vectors and cir-
culations and fluxes. In fact (16) relates primal edge vectors to dual face vectors, (17) expresses b in terms its
fluxes across dual faces and primal edge vectors, (18) expresses a in terms its circulations along primal edges
and dual face vectors, (19) expresses the dot product of a and b in terms of the circulations of a along primal
edges and the fluxes of b across dual faces.

In a similar way, to preserve the thermodynamic relations for the magnetic constitutive equations at the
discrete level, (13) and (15) are required to be exact when the reluctivity tensor m is homogeneous and when
the magnetic induction b and the magnetic field h are spatially uniform in X.

Property 2. In order that (13) and (15) are exact for arbitrary, spatially uniform, magnetic field h and magnetic
induction b and for an arbitrary homogeneous, symmetric positive definite, reluctivity tensor m, it is necessary that

the following equation:
V I ¼
X

i

f

1

si
~l i; ð20Þ
holds, where V is the volume of X, I is the fundamental tensor.

Proof. Since b is spatially uniform it results in ui ¼ si � b. Then since h ¼ m � b it results in ~f i ¼ ~l i � m � b. Thus
from (14) it results in
X

i

f

1

ðsi � bÞð~l i � m � bÞ ¼ b �
X

i

1

1

si
~l i

 !
� m � b ¼ V b � m � b:
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Then, since b is arbitrary, it results in
symðA � mÞ ¼ V m;
in which
A ¼
X

i

f

1

si
~l i:
Then, since m is an arbitrary symmetric, positive definite reluctivity tensor, proceeding as in the proof of Prop-
erty 1, (20) follows. h

Property 2 is a geometric property relating the faces of the primal grid to the edges of the dual grid. By
taking the dot product of (20) with two arbitrary vectors a and b, it also follows:
V b ¼
X

i

f

1

~Bisi; ð21Þ

V a ¼
X

i

f

1

Ai
~l i; ð22Þ

V a � b ¼
X

i

f

1

Ai
~Bi; ð23Þ
Ai being the fluxes of a across the faces of the primal grid and ~Bi being the circulations of b along the edges of
the dual grid. Assuming that it is Ai ¼ a � si and ~Bi ¼ b �~l i, it straightforwardly follows that each of Eqs. (20)–
(23) implies all of the others.

Eqs. (20)–(23) are obtained from (A.16)–(A.19) of Appendix A, relating covariant and contravariant com-
ponents and bases. In fact, (20) relates primal face vectors to dual edge vectors, (21) expresses b in terms of its
circulations along dual edges and primal face vectors, (22) expresses a in terms its fluxes across primal faces
and dual edge vectors, (23) expresses the dot product of a and b in terms of fluxes of a across primal faces and
the circulations of b along dual edges.
6. Constructing the dual of a polyhedral grid

We show here how the dual of a polyhedral primal grid can be constructed in such a way that Properties 1
and 2 are satisfied.

So let us assume that X is a polyhedron, shown in Fig. 1. Its faces Ri with i ¼ 1 . . . f are polygons and its
edges Cj with j ¼ 1 . . . l are segments. Its nodes are points rk with k ¼ 1 . . . n. The dual of X has volumes ~Xk

with i ¼ 1 . . . n, faces ~Rj with j ¼ 1 . . . l and edges ~Ci with i ¼ 1 . . . f . Both the edges ~Ci with i ¼ 1 . . . f and the
traces of faces ~Rj with j ¼ 1 . . . l on the boundary of X are assumed to be segments. However dual faces ~Rj with
j ¼ 1 . . . l are not required to be polygons, not being in general planar.

Let rX be the dual node of X. Let rRi be the intersections of Ri and ~Ci with i ¼ 1 . . . f . Let rCj be the inter-
sections of Cj and ~Rj with j ¼ 1 . . . l. Besides, given the Cj edge and the two Ri faces adjacent to Cj, let the RCj

face be the union of the two triangles having as vertices the nodes of Cj and rRi .
By exploiting the geometric relations for polygons given in Appendix B, it results in

Property 3. Eq. (16) holds if and only if
T ¼
X

i

f

1

X
k

n

1

Z
~Xk\Ri

ðr� rkÞnðrÞdr ð24Þ

¼ � 1

2

X
i

f

1

si
1

jRij

Z
Ri

rdr� rRi

� �
�
X

j

l

1

sCj

1

jCjj

Z
Cj

rdc� rCj

 !
¼ 0; ð25Þ



Fig. 1. A polyhedron X.
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being n(r) a unit vector normal to Ri at r, and being si; sCj the face vectors of Ri and RCj respectively, outward

normal to oX.

Proof. If (16) holds then also (19) holds for arbitrary, spatially uniform, a and b. It is
Z
X

a � bdx ¼
X

k

n

1

Z
~Xk

a � b dx:
Besides, since a is spatially uniform and thus it is a ¼ ruðrÞ with uðrÞ ¼ a � r, it results in
Z
~Xk

a � b dx ¼
Z

~Xk

rðuðrÞ � uðrkÞÞ � bdx ¼
Z

~Xk

r � ðuðrÞ � uðrkÞÞbdx�
Z

~Xk

ðuðrÞ � uðrkÞÞr � bdx

¼
Z

o~Xk

ðuðrÞ � uðrkÞÞb � nðrÞdr

¼
X

i

f

1

Z
~Xk\Ri

ðuðrÞ � uðrkÞÞb � nðrÞdrþ
X

j

l

1

Z
~Xk\~Rj

ðuðrÞ � uðrkÞÞb � nðrÞdr; ð26Þ
n(r) being oriented as the outward normal to o~Xk. It is
Z
~Xk\~Rj

ðuðrÞ � uðrkÞÞb � nðrÞdr ¼
Z

~Xk\~Rj

ðuðrCjÞ � uðrkÞÞb � nðrÞdrþ
Z

~Xk\~Rj

ðuðrÞ � uðrCjÞÞb � nðrÞdr:
Besides
X
j

l

1

X
k

n

1

Z
~Xk\~Rj

ðuðrCjÞ � uðrkÞÞb � nðrÞdr ¼
X

j

l

1

Aj
~Bj: ð27Þ
and
 X
k

n

1

Z
~Xk\~Rj

ðuðrÞ � uðrCjÞÞb � nðrÞdr ¼ 0: ð28Þ
Thus, using (19) together with (26)–(28), it follows:
X
k

n

1

X
i

f

1

Z
~Xk\Ri

a � ðr� rkÞnðrÞ � bdr ¼ 0
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or equivalently since a and b are arbitrary,
X
i

f

1

X
k

n

1

Z
~Xk\Ri

ðr� rkÞnðrÞdr ¼ 0:
By applying Lemma 5 of Appendix B to each face Ri, (24) follows. h

Besides

Property 4. Eq. (20) holds if and only if
eT ¼X
i

f

1

Z
Ri

ðr� rRiÞnðrÞdx ð29Þ

¼
X

i

f

1

si
1

jRij

Z
Ri

rdr� rRi

� �
¼ 0; ð30Þ
being n(r) a unit vector normal to Ri at r.

Proof. If (20) holds then also (23) holds for arbitrary, spatially uniform, a and b. Since b is spatially uniform
and thus it is b ¼ ruðrÞ with uðrÞ ¼ b � r, it results in
Z

X
a � bdx ¼

Z
X

a � rðuðrÞ � uðrXÞÞdx ¼
Z

X
r � ðuðrÞ � uðrXÞÞadx�

Z
X
ðuðrÞ � uðrXÞÞr � adx

¼
Z

oX
ðuðrÞ � uðrXÞÞa � nðrÞdx

¼
X

i

f

1

Z
Ri

ðuðrÞ � uðrRiÞÞa � nðrÞdxþ
X

i

f

1

Z
Ri

ðuðrRiÞ � uðrXÞÞa � nðrÞdx; ð31Þ
nðrÞ being oriented as the outward normal to oX. It is
X
i

f

1

Z
Ri

ðuðrRiÞ � uðrXÞÞa � nðrÞdx ¼
X

i

f

1

Ai
~Bi: ð32Þ
Thus by using (23) together with (31), (32), it results in
X
i

f

1

Z
Ri

b � ðr� rRiÞnðrÞ � adx ¼ 0
or equivalently, since a and b are arbitrary,
X
i

f

1

Z
Ri

ðr� rRiÞnðrÞdx ¼ 0
from which (29) follows. h

From Properties 3 and 4 it descends that the validity of (16), (20) depends only on the trace of the dual of X
on oX. Thus it is completely independent on the position of rX. As a consequence the dual of X is not com-
pletely fixed. But the main question is: for a polyhedron X, can the trace of the dual of X on oX be chosen
in such a way that (16) and (20) hold?

Firstly, it can be observed that in some cases there are different ways to choose the trace of the dual of X on
oX in order to satisfy (16) and (20). For instance, it can be straightforwardly verified that for an oblique par-
allelepiped Properties 3, 4 hold if its faces are subdivided by the dual grid parallely to its edges as shown in
Fig. 2(a).

Secondly, from Properties 3, 4, it follows that (16) and (20) hold if and only if the trace of the dual of X on
oX is such that



Fig. 2. Dual grid for different choices rX, r0X of the dual node and for different choices of the polyhedron X: (a) parallelepiped;
(b) tetrahedron.
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X
i

f

1

si
1

jRij

Z
Ri

rdr� rRi

� �
¼ 0; ð33Þ

X
j

l

1

sCj

1

jCjj

Z
Cj

rdc� rCj

 !
¼ 0: ð34Þ
From (33) and (34) we note that there is a unique choice of the trace of the dual of X on oX such that its restric-
tion to each edge and to each face is independent of its restrictions on all other edges and faces. This choice is
such that
rRi ¼
1

jRij

Z
Ri

rdr; i ¼ 1 . . . f ; ð35Þ

rCj ¼
1

jCjj

Z
Cj

rdc; j ¼ 1 . . . l: ð36Þ
or equivalently such that rRi are the barycenters of faces Ri, with i ¼ 1 . . . f , and rCj are the barycenters of edges
Cj, with j ¼ 1 . . . l. Thus a simple construction of the trace of the dual of X on oX, such that (33) and (34) hold
can be obtained by means of a barycentric subdivision of oX [18]. This can be done at least in the case in which
the Ri faces with i ¼ 1 . . . f are convex polygons, since then the barycentric subdivision of oX is ensured to be
contained in oX. In particular cases, such as with a tetrahedron X show in Fig. 2(b), the barycentric subdivi-
sion of oX is also the only choice of the trace of the dual of X on oX such that (33) and (34) hold, as it can be
directly verified.

Thus by arbitrarily choosing a position vector rX as in Fig. 2 within X, a dual grid such that (16) and (20)
hold is obtained. This can be done at least in the case in which the X polyhedron is convex, since then the dual
grid is ensured to be contained in X.

We note that the convexity of the polyhedron X is just a sufficient condition and not a necessary condition
for constructing a dual grid in such a way that (16) and (20) hold.

7. Reinterpreting known constitutive equations which preserve all thermodynamics relations

Lately the present authors have proposed a method [14,15] for generating electric and magnetic discrete
constitutive equations preserving all the thermodynamic relations for constitutive equations. This method is
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limited to the case of a primal grid composed of tetrahedra, (oblique) triangular prisms and (oblique) paral-
lelepipeds and of a dual grid obtained by barycentric subdivision of the primal grid [18]. The method has been
presented in terms of piece-wise uniform edge elements and piece-wise uniform face elements. It is here rein-
terpreted in a different manner.

Let the X primal grid be either a tetrahedron, an (oblique) triangular prism or an (oblique) parallelepiped
and let the dual grid be the barycentric subdivision of X, as shown in Fig. 3.

Let ~Xk, with k ¼ 1 . . . n, be a dual volume of X. Let l1k ¼ ~l1k, l2k ¼ ~l2k and l3k ¼ ~l3k, be the edge vectors of
the intersections of the primal edges of X incident in node rk with ~Xk. These edge vectors identify the edges of a
parallelepiped. Let ~s1k ¼ s1k, ~s2k ¼ s2k and ~s3k ¼ s3k be the face vectors of the faces of the parallelepiped oppo-
site to and positively oriented with respect to these edges.

Let
vk ¼
v1k

v2k

v3k

264
375
be the array of the circulations of e along the edges of edge vectors l1k; l2k; l3k, with k ¼ 1 . . . n. For an electric
field e, spatially uniform in X, such circulations are fractions of the circulations of e along the +3 primal edges
of X incident in node rk, so that
vk ¼ Tkv;
in which Tk are d · l matrices. Let Ek be the matrices which transform the circulations of e along the edges of
edge vectors l1k; l2k; l3k into the fluxes of d ¼ e � e across the faces of face vectors ~s1k;~s2k;~s3k. These matrices are
defined by (A.15) of Appendix A by assuming t = e and ~s1 ¼ ~s1k, ~s2 ¼ ~s2k and ~s3 ¼ ~s3k, with k ¼ 1 . . . n. As
proved in [14,15], matrix
E ¼ K
X

k

n

1

TT
k EkTk;
in which K is 1=3, 2=3 and +1 respectively for tetrahedra, (oblique) triangular prisms and (oblique) parallel-
epipeds, defines a discrete electric constitutive equation, preserving the thermodynamic relations for the elec-
tric constitutive equations at the continuous level.
Fig. 3. A tetrahedral volume X.
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Let
uk ¼
u1k

u2k

u3k

264
375
be the arrays of the fluxes of b across the faces whose face vectors are s1k; s2k; s3k, with k ¼ 1 . . . n. For a mag-
netic induction b, spatially uniform in X, such fluxes are fractions of the fluxes of b across the +3 primal faces
of X incident in node rk, so that
uk ¼ Pku;
in which Pk are d · f matrices. Let Nk be the matrices, which transform the fluxes of b across the faces of face
vectors s1k; s2k; s3k into the circulations of h ¼ m � b along the edges of edge vectors ~l1k, ~l2k, ~l3k. These matrices
are defined by (A.21) of Appendix A by assuming t = m and ~l1 ¼ ~l1k, ~l2 ¼ ~l2k and ~l3 ¼ ~l3k, with k ¼ 1 . . . n. As
proved in [14,15], matrix
N ¼ K
X

k

n

1

PT
k NkPk
is a discrete magnetic constitutive equation, preserving the thermodynamic relations for the magnetic consti-
tutive equation at the continuous level.

8. Constitutive equations over polyhedral grids

In Section 5, Properties 1 and 2 were shown to be necessary conditions for the construction of discrete con-
stitutive equations preserving the thermodynamic relations for constitutive equations. Such Properties are here
proved to be also sufficient conditions. In fact discrete constitutive equations preserving the thermodynamic
relations for constitutive equations are here deduced by extending the method described in Section 7, when
Properties 1 and 2 hold.

Thus let the dual grid satisfy (33) and (34). The polyhedron X can be naturally subdivided into tetrahedra
sh, with h ¼ 1 . . . 2l, as shown in Fig. 4. Each tetrahedron has as vertices the dual node rX the two extrema of
one edges Cj and point rRi of a primal face Ri adjacent to Cj. Let l1h be the edge vector of Cj. Let l2h be the edge
vector of the intersection of Ri with ~Rj, oriented from rCj to rRi . Let l3h be the edge vector of ~Ci, oriented as the
outward normal to oX. As in Appendix A, l1h ¼ ~l1h, l2h ¼ ~l2h, l3h ¼ ~l3h are the edge vectors of edges identifying
Fig. 4. The subdivision of the X polyhedron into the sh tetrahedra, with h ¼ 1 . . . 2l.
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a parallelepiped. Let ~s1h ¼ s1h, ~s2h ¼ s2h and ~s3h ¼ s3h be the face vectors of the faces of the parallelepiped oppo-
site to and positively oriented with respect to these edges.

The following Lemmas 1–4 lead to Property 5.

Lemma 1. The following relation holds:
eT � T ¼
X

i

f

1

X
k

n

1

ðrk � rRiÞf ik; ð37Þ
f ik being the vector face of the intersection of Ri with ~Xk, outward normal to oX.

Proof. From (24), (29), it results in
eT � T ¼
X

i

f

1

Z
Ri

ðr� rRiÞnðrÞdx�
X

i

f

1

X
k

n

1

Z
Ri\~Xk

ðr� rkÞnðrÞdr ¼
X

i

f

1

X
k

n

1

Z
Ri\~Xk

ðrk � rRiÞnðrÞdx
from which (37) follows. h

Lemma 2. The following relation holds:
1

2

X
h

2l

1

l2h~s
2h ¼

X
j

l

1

ejf
j � 1

2

X
h

2l

1

l2h~s
3h; ð38Þ
in which ej is the edge vector of the trace of ~Rj on oX, arbitrarily oriented, and f j is the face vector of the triangle

whose vertices are rX and the extrema of Cj, positively oriented with respect to ej.

Proof. Let sh1
and sh2

be the pair of tetrahedra adjacent to the Cj edge, as shown in Fig. 5.
It results in
~s2h1 ¼ l3h1
� l1h1

¼ ðl3h1
� l2h1

Þ � l1h1
þ l2h1

� l1h1
¼ 2f j � ~s3h1 :
Similarly
~s2h2 ¼ �l3h2
� l1h2

¼ ð�l3h2
þ l2h2

Þ � l1h2
� l2h2

� l1h2
¼ �2f j � ~s3h2 :
Thus
l2h1
~s2h1 ¼ 2l2h1

f j � l2h1
~s3h1 ; ð39Þ

l2h2
~s2h2 ¼ �2l2h2

f j � l2h2
~s3h2 : ð40Þ
Fig. 5. Elements ej and f j, with j ¼ 1 . . . l.
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By summing (39) and (40) over all edges Cj and by observing that
l2h1
� l2h2

¼ ej;
then (38) follows. h

Lemma 3. The following relation holds:
1

2

X
h

2l

1

l2h~s
3h ¼ �3eT þX

i

f

1

X
k

n

1

ðrk � rRiÞf ik: ð41Þ
Proof. From Property 4 and Lemma 6 of Appendix B, it follows:
eT ¼X
i

f

1

Z
Ri

ðr� rRiÞnðrÞdx ¼ 1

3

X
i

f

1

X
k

n

1

ðrk � rRiÞf ik � 1

6

X
h

2l

1

l2h~s
3h
and (41) follows. h

Lemma 4. The following relation holds:
V I ¼
X

j

l

1

ejf
j þ eT : ð42Þ
Proof. Let a, b be spatially uniform fields, so that a ¼ ruðrÞ with uðrÞ ¼ a � r. Let qi be the pyramid whose
base is the Ri face and has vertex rX, with i ¼ 1 . . . f (Fig. 6). Let the lateral faces of these pyramids be pj with
j ¼ 1 . . . l. It results in
Z

qi

a � bdx ¼
Z

qi

rðuðrÞ � uðrRiÞÞ � bdx ¼
Z

qi

r � ðuðrÞ � uðrRiÞÞbdx�
Z

qi

ðuðrÞ � uðrRiÞÞr � bdx

¼
Z

oqi

ðuðrÞ � uðrRiÞÞb � nðrÞdr

¼
Z

Ri

ðuðrÞ � uðrRiÞÞb � nðrÞdrþ
X

j

l

1

Z
oqi\pj

ððuðrÞ � uðrCjÞÞ þ ðuðrCjÞ � uðrRiÞÞÞb � nðrÞdr:
Fig. 6. A pyramid qi of base Ri.
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Since, for each j ¼ 1 . . . l,
X
i

f

1

Z
oqi\pj

ðuðrÞ � uðrCjÞÞb � nðrÞdr ¼ 0;

X
i

f

1

Z
oqi\pj

ðuðrCjÞ � uðrRiÞÞb � nðrÞdr ¼ ða � ejÞðf j � bÞ;
it results in
V a � b ¼
X

i

f

1

Z
qi

a � bdx ¼
X

j

l

1

ða � ejÞðf j � bÞ þ
X

i

f

1

Z
Ri

ðuðrÞ � uðrRiÞÞb � nðrÞdr:
Because a, b are arbitrary, (42) follows. h

From previous Lemmas 1–4 the following result is deduced.

Property 5. The following relation holds:
1

2

X
h

2l

1

l2h~s
2h ¼ 1

2

X
h

2l

1

~l2hs2h ¼ V I þ T þ eT : ð43Þ
Proof. From Lemmas 1 and 3, it is
1

2

X
h

2l

1

l2h~s
3h ¼ �3eT þ ðeT � TÞ ¼ �2eT � T:
Then from Lemma 2 it follows:
1

2

X
h

2l

1

l2h~s
2h ¼

X
j

l

1

ejf
j þ 2eT þ T:
Thus from Lemma 4, (43) follows. h

The dual grids are here assumed to be such that (33) and (34) hold. As a particular case (35) and (36) hold,
that is the trace of the dual of oX on X is the barycentric subdivision of oX. The approach of Section 7 for
constructing discrete constitutive equations is extended to such dual grids, as follows.

Let
vh ¼
v1h

v2h

v3h

264
375
be the arrays with the circulations of e along edges l1h, l2h, l3h, with h ¼ 1 . . . 2l. From (18), for an electric field
e, spatially uniform in X, such circulations can be expressed as
vh ¼ Thv;
where
Th ¼
0 � � � 1 � � � 0

l2h � ~s
1

V � � � l2h � ~s
j

V � � � l2h � ~s
l

V

l3h � ~s
1

V � � � l3h � ~s
j

V � � � l3h � ~s
l

V

264
375:
Let Eh be the matrices which transform the circulations of e along the edges of edge vectors l1h; l2h; l3h into the
fluxes of d ¼ e � e across the faces of face vectors ~s1h;~s2h;~s3h. These matrices are defined by (A.15) of Appendix
A by assuming t ¼ e and ~s1 ¼ ~s1h, ~s2 ¼ ~s2h and ~s3 ¼ ~s3h, with h ¼ 1 . . . 2l.
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Now, using Property 5, we can prove the following main result.

Property 6. Matrix
E ¼ 1

6

X
h

2l

1

TT
h EhTh ð44Þ
is a discrete electric constitutive equation preserving the thermodynamic relations for electric constitutive equa-

tions at the continuous level.

Proof. For an electric field e, spatially uniform in X, it is
Thv ¼
l1h � e
l2h � e
l3h � e

264
375
and
EhThv ¼
~s1h � d
~s2h � d
~s3h � d

264
375;
being d ¼ e � e. Then
Ev ¼ 1

6

X
h

2l

1

TT
h

~s1h � d
~s2h � d
~s3h � d

264
375 ¼

1
6

~s1

V � 2V I þ
P

h

2l

1

l2h~s
2h þ

P
h

2l

1

l3h~s
3h

� �
� d

..

.

1
6

~sl

V � 2V I þ
P

h

2l

1

l2h~s
2h þ

P
h

2l

1

l3h~s
3h

� �
� d

26666664

37777775: ð45Þ
Thus since, from Property 5 it is
X
h

2l

1

l2h~s
2h ¼ 2V I
and from Property 2 it is
X
h

2l

1

l3h~s
3h ¼

X
h

2l

1

~l3hs3h ¼ 2
X

i

f

1

~l isi ¼ 2V I ;
from (45) it results in
Ev ¼
~s1 � d

..

.

~sl � d

264
375
and E is consistent with (1).
Also it is
1

2
vTEv ¼ 1

12

X
h

2l

1

vT
h Ehvh ¼

1

2

X
h

2l

1

jshje � d ¼
1

2
V e � d
and E is consistent with (2).
Since ET

h ¼ Eh, for each h ¼ 1 . . . 2l, it results in
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ET ¼
X

h

2l

1

TT
h EhTh

 !T

¼
X

h

2l

1

TT
h ET

h Th ¼
X

h

2l

1

TT
h EhTh ¼ E
and E is symmetric.
Since vT

h Ehvh P 0, for each h ¼ 1 . . . 2l, it results in
1

2
vTEv ¼ 1

12

X
h

2l

1

vTTT
h EhThv ¼ 1

12

X
h

2l

1

vT
h Ehvh P 0:
Also vTEv ¼ 0 implies vT
h Ehvh ¼ 0 and thus vh ¼ Thv ¼ 0 for all h ¼ 1 . . . 2l. Then v1h ¼ 0 for all h ¼ 1 . . . 2l, or

equivalently vj ¼ 0 for all j ¼ 1 . . . l that is v ¼ 0. Thus E is positive definite. h

In a similar way let
uh ¼
u1h

u2h

u3h

264
375
be the fluxes of b across faces s1h, s2h, s3h, with h ¼ 1 . . . 2l. From (22), for a magnetic induction b, spatially
uniform in X, such fluxes can be expressed as
uh ¼ Phu;
where
Ph ¼
s1h � ~l

1

V � � � s1h � ~l i

V � � � s1h � ~l
f

V

s2h � ~l
1

V � � � s2h � ~l i

V � � � s2h � ~l
f

V

0 � � � ni � � � 0

264
375
and ni ¼ s3h � si= j sij2.
Let Nk be the matrices, which transform the fluxes of b across the faces of face vectors s1h, s2h, s3h into the

circulations of h ¼ m � b along the edges of edge vectors ~l1h, ~l2h, ~l3h. These matrices are defined by (A.21) of
Appendix B by assuming t ¼ m and ~l1 ¼ ~l1h, ~l2 ¼ ~l2h and ~l3 ¼ ~l3h, with h ¼ 1 . . . 2l.

Using again Property 5, the following main result is now proved:

Property 7. Matrix
N ¼ 1

6

X
h

2l

1

PT
h NhPh ð46Þ
is a discrete magnetic constitutive equation, preserving the thermodynamic relations for magnetic constitutive
equations at the continuous level.

Proof. For a magnetic field b, spatially uniform in X, it is
Phu ¼
s1h � b
s2h � b
s3h � b

264
375
and
NhPhu ¼
~l1h � h
~l2h � h
~l3h � h

264
375;
being h ¼ m � b. Then
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Nu ¼ 1

6

X
h

2l

1

PT
h

~l1h � h
~l2h � h
~l3h � h

264
375 ¼

1
6

~l1

V �
P

h

2l

1

~l1hs1h þ
P

h

2l

1

~l2hs2h þ 2V I

� �
� h

..

.

1
6

~lf

V �
P

h

2l

1

~l1hs1h þ
P

h

2l

1

~l2hs2h þ 2V I

� �
� h

26666664

37777775: ð47Þ
Thus since, from Property 5 it is
X
h

2l

1

~l2hs2h ¼ 2V I
and from Property 1 it is
X
h

2l

1

~l1hs1h ¼
X

h

2l

1

l1h~s
1h ¼

X
j

l

1

lj~s
j ¼ 2V I ;
from (47) it results in
Nu ¼

~l1 � h
..
.

~lf � h

2664
3775
and N is consistent with (2).
Also it is
1

2
uTNu ¼ 1

12

X
h

2l

1

uT
h Nhuh ¼

1

2

X
h

2l

1

jshjb � h ¼
1

2
V b � h
and N is consistent with (8).
Since NT

h ¼ Nh, for each h ¼ 1 . . . 2l, it results in
NT ¼
X

h

2l

1

PT
h NT

h Ph

 !T

¼
X

h

2l

1

PT
h NT

h Ph ¼
X

h

2l

1

PT
h NhPh ¼ N
and N is symmetric.
Since uT

h Nhuh P 0, for each h ¼ 1 . . . 2l, it results in
1

2
uTNu ¼ 1

12

X
h

2l

1

uTPT
h NhPhu ¼

1

12

X
h

2l

1

uT
h Nhuh P 0:
Also uTNu ¼ 0 implies uT
h Nhuh ¼ 0 and thus uh ¼ Phu ¼ 0 for all h ¼ 1 . . . 2l. Then u1h ¼ 0 for all

h ¼ 1 . . . 2l, or equivalently ui ¼ 0 for all i ¼ 1 . . . f that is u ¼ 0. Thus N is positive definite. h

Remark 1. Property 1 implies that also (A.14) and (A.15) of Appendix A can be extended to dual grids. Thus
the following relation holds:
~w ¼ E0v
with
E0 ¼ ~si � e � ~sj

V

� �
:

Such E0 matrix is a natural candidate for a discrete electric constitutive equation. However, as it can be
straightforwardly verified, even though E0 is consistent with (4) and (5) and is symmetric, it is positive
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semi-definite and not positive definite being singular. Thus it does not preserve the thermodynamic relations for
electric constitutive equations at the continuous level.

Remark 2. Property 2 implies that also (A.20) and (A.21) of Appendix A can be extended to dual grids. Thus
the following relation holds
Fig. 7.
diamet
~f ¼ N0u
with
N0 ¼
~l i � m �~lj

V

" #
:

Such N0 matrix is a natural candidate for a discrete magnetic constitutive equation. However, as it can be
straightforwardly verified, even though N0 is consistent with (10) and (11) and is symmetric, it is positive
semi-definite and not positive definite being singular. Thus it does not preserve the thermodynamic relations
for magnetic constitutive equations at the continuous level.
9. Numerical experiments

As working example, we consider an electromagnetic wave propagation problem formulated in the fre-
quency domain, where the constitutive equations previously introduced can be naturally used. The field along
a short-circuited section of a coaxial transmission line has been computed, the analytical solution being well
known [20]. The transmission line has internal radius r ¼ 2 cm, external radius R ¼ 4 cm and length l ¼ 8 cm.
The numerical analysis has been performed both on a grid of tetrahedra and of hexahedra. The constitutive
equations have been constructed using the method here proposed. The per cent error of the computed electric
field, in the energy norm, with respect to the analytical solution [20] is plotted in Fig. 7, versus the maximum
grid diameter hmax, at frequency
f ¼ 1:1
lffiffiffiffiffiffiffiffiffi
l0e0
p ;
being l0 and e0 vacuum permeability and permittivity respectively. The error with respect to the analytical
solution appears to be limited and to decrease with grid size. As a reference, the per cent error with respect
Percent error of the computed electric field with respect to the analytical solution, in the energy norm, versus maximum grid
er.
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to the analytical solution is reported also when for a grid of tetrahedra the constitutive equations are con-
structed by means of edge elements using Whitney’s functions [13].

10. Conclusions

In the paper, we proved a way to construct discrete counterparts of constitutive equations over polyhedral
grids, preserving the thermodynamic relations for constitutive equations as a mean to ensure consistency and
stability of the resulting equations at discrete level.

Numerical experiments demonstrate that the obtained discrete constitutive equations lead to accurate
approximations of the electromagnetic field.

Appendix A. Reinterpreting covariant and contravariant components in terms of circulations and fluxes

Let vi, with i ¼ 1 . . . 3, be a triple of non-coplanar vectors, defining the covariant basis of a coordinate sys-
tem [19]. The covariant components of vector a are then
ai ¼ a � vi i ¼ 1 . . . 3: ðA:1Þ

The contravariant components bi of a vector b, with i ¼ 1 . . . 3, are defined by
b ¼
X

i

d

1

bivi: ðA:2Þ
By solving (A.2) for bi with i ¼ 1 . . . 3, it results in
bi ¼ b � vi i ¼ 1 . . . 3; ðA:3Þ

where
vi ¼ vi�1 � viþ1

vi�1 � viþ1 � vi
; i ¼ 1 . . . 3 ðA:4Þ
the operations on indexes being modulo 3.
The vectors vi with i ¼ 1 . . . 3 define the contravariant basis of the coordinate system and are solutions of

equation
I ¼
X

i

3

1

viv
i: ðA:5Þ
By taking the dot product of (A.5) by a it also follows:
a ¼
X

i

3

1

aiv
i ðA:6Þ
and by taking the scalar product of (A.6) with b,
a � b ¼
X

i

3

1

aib
i: ðA:7Þ
By assuming (A.1) and (A.3), it follows that each of Eqs. (A.2), (A.5), (A.6), (A.7) implies all of the others.
Covariant and contravariant components can be applied also to tensors. For instance for a double tensor t,

its contravariant components
tij ¼ vi � t � vj i; j ¼ 1 . . . 3 ðA:8Þ

transform the covariant components aj of a vector a into the contravariant components bi of a vector b as follows
bi ¼
X

j

3

1

tijaj i ¼ 1 . . . 3: ðA:9Þ
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Now let li with i ¼ 1 . . . 3 be the edge vectors of 3 segments identifying a parallelepiped of volume
V ¼ jl i�1 � l i � l iþ1j. Let ~si, with i ¼ 1 . . . 3, be the face vectors of the faces of the parallelepiped opposite to
and positively oriented with respect to these edges. By assuming vi ¼ l i it straightforwardly results in
vi ¼ ~si=V , with i ¼ 1 . . . 3.

Let Ai be the circulations of a vector a along the edge of edge vector li and let ~Bi be the flux of a vector b
across the face of face vector ~si, with i ¼ 1 . . . 3. Then it results in ai ¼ Ai, bi ¼ ~Bi=V . Moreover (A.5), (A.2),
(A.6), (A.7) can be rewritten as
V I ¼
X

i

3

1

l i~s
i; ðA:10Þ

V b ¼
X

i

3

1

eBil i; ðA:11Þ

V a ¼
X

i

3

1

Ai~s
i; ðA:12Þ

V a � b ¼
X

i

3

1

Ai
eBi: ðA:13Þ
Thus covariant components ai of vector a and contravariant components bi of vector b can be equivalently
represented in terms of circulations Ai of vector a and fluxes eBi of vector b. Similarly covariant basis vectors
vi and contravariant basis vectors vi can be equivalently represented in terms of edge vectors li and face vectors
~si. Analogously (A.8) and (A.9) can be rewritten as
eBi ¼
X

j

3

1

T ijAj i ¼ 1 . . . 3 ðA:14Þ
in which
T ij ¼ Vtij ¼ ~si � t � ~sj

V
i; j ¼ 1 . . . 3: ðA:15Þ
Alternatively the role of circulations and fluxes can also be exchanged. In fact let si with i ¼ 1 . . . 3 be the face
vectors of +3 parallelograms identifying a parallelepiped of volume V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jsi�1 � si � siþ1

p
j and let ~l i, with

i ¼ 1 . . . 3, be the edge vectors of the edges opposite to and positively oriented with respect to these faces.
By assuming vi ¼ si it results in vi ¼ ~l i=V , with i ¼ 1 . . . 3.

Let Ai be the flux of a vector a across the face of face vector si and let eBi be the circulation of a vector b
along the edge of edge vector ~l i, with i ¼ 1 . . . 3. It results in ai ¼ Ai and bi ¼ eBi=V . Moreover (A.5), (A.2),
(A.6), (A.7) can be rewritten as
V I ¼
X

i

3

1

si
~l i; ðA:16Þ

V b ¼
X

i

3

1

eBisi; ðA:17Þ

V a ¼
X

i

3

1

Ai
~l i; ðA:18Þ

V a � b ¼
X

i

3

1

Ai
eBi: ðA:19Þ
Thus covariant components ai of vector a and contravariant components bi of vector b can be equivalently
represented in terms of fluxes Ai of vector a and circulations eBi of vector b. Similarly covariant basis vectors
vi and contravariant basis vectors vi can be equivalently represented in terms of face vectors si and edge vectors
~l i. Analogously (A.8), (A.9) can be rewritten as
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eBi ¼
X

j

3

1

T ijAj i ¼ 1 . . . 3 ðA:20Þ
in which
T ij ¼ Vtij ¼
~l i � t �~lj

V
i; j ¼ 1 . . . 3: ðA:21Þ
Appendix B. Geometric relations for polygons

Let R be a generic polygon. Let rk be the nodes of R, with k ¼ 1 . . . n. Let Ck be the edges of R, with
k ¼ 1 . . . n. Nodes are assumed to be numbered counterclockwise. Edges Ck are assumed to be oriented from
node rk to node rkþ1. Operations on indexes are modulo n (Fig. B.1).

The dual grid of R has faces ~Rk and edges ~Ck with k ¼ 1 . . . n. Edges ~Ck are assumed to be segments. Let rR

be the dual node of R and let rCk be the intersection of Ck and ~Ck, with k ¼ 1 . . . n.
Dual face ~Rk is the union of triangle ~R�k (having vertices rR, rk, rCk�1

) and triangle ~Rþk (having vertices
rR; rk; rCk ). The union of faces ~Rþk and ~R�kþ1 is referred to as RCk . It follows:

Lemma 5.
�
X

k

n

1

Z
~Rk

ðr� rkÞdr ¼ 1

2
jRj 1

jRj

Z
R

rdr� rR

� �
þ
X

k

n

1

jRCk j
1

jCkj

Z
Ck

rdc� rCk

� �
ðB:1Þ
Proof.
�
X

k

n

1

Z
~Rk

ðr� rkÞdr ¼ �
Z

R
ðr� rRÞdrþ

X
k

n

1

Z
~Rk

ðrk � rRÞdr

¼ �jRj 1

jRj

Z
R

rdr� rR

� �
þ
X

k

n

1

j~Rkjðrk � rRÞ: ðB:2Þ
Fig. B.1. Geometric elements of the R polygon.
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Moreover
X
k

n

1

j~Rkjðrk � rRÞ ¼
X

k

n

1

j~Rþk jðrk � rRÞ þ j~R�kþ1jðrkþ1 � rRÞ

¼
X

k

n

1

1

2
ðj~Rþk j þ j~R�kþ1jÞððrk � rRÞ þ ðrkþ1 � rRÞÞ þ

X
k

n

1

1

2
ðj~Rþk j � j~R�kþ1jÞðrk � rkþ1Þ:
Thus, since it is
1

2
ðj~Rþk j þ j~R�kþ1jÞððrk � rRÞ þ ðrkþ1 � rRÞÞ ¼

3

2

Z
Rk
þ[Rkþ1

�

ðr� rRÞdr;
and also
1

2
ðjRk

þj � jRkþ1
� jÞðrk � rkþ1Þ ¼

1

2
jRCk jððrk � rCk Þ þ ðrkþ1 � rCk ÞÞ ¼ jRCk j

1

jCkj

Z
Ck

rdc� rCk

� �

it also results in
X

k

n

1

j~Rkjðrk � rRÞ ¼
3

2
jRj 1

jRj

Z
R

rdr� rR

� �
þ
X

k

n

1

jRCk j
1

jCkj

Z
Ck

rdc� rCk

� �
: ðB:3Þ
By substituting (B.3) into (B.2), (B.1) follows. h

Lemma 6.
Z
R
ðr� rRÞdr ¼ 1

3

X
k

n

1

j~Rkjðrk � rRÞ þ
1

3

X
k

n

1

jRCk jðrCk � rRÞ ðB:4Þ
Proof. From the formula of the barycenter of a triangle it results in
Z
R
ðr� rRÞdr ¼ 1

3

X
k

n

1

j~Rþk jððrk � rRÞ þ ðrCk � rRÞÞ þ
1

3

X
k

n

1

j~R�k jððrk � rRÞ þ ðrCk�1
� rRÞÞ

¼ 1

3

X
k

n

1

ðj~R�k j þ j~Rþk jÞðrk � rRÞ þ
1

3

X
k

n

1

ðj~Rþk j þ j~R�kþ1jÞðrCk � rRÞ
from which (B.4) follows. h

It can be straightforwardly concluded that Lemmas 5, 6 hold also with arbitrary numerations and orienta-
tions of edges and nodes of R.
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